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LETTER TO THE EDITOR 

Scaling in the kinetics of droplet growth and coalescence: 
heterogeneous nucleation 
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t Central Research and Development Department, E1 DuPont de Nemours and Company, 
Wilmington, DE 91881, USA 
t Department of Physics, Emory University, Atlanta, G A  30322, USA 

Received 18 November 1988 

Abstract. The kinetics of droplet growth in a heterogeneous nucleation process is investi- 
gated using Monte Carlo simulations, scaling theory and the Smoluchowski equation. The 
exponent describing the scaling of the droplet size distribution and the growth law for the 
mean droplet size are calculated exactly. The simulation data are found to be consistent 
with the theoretical predictions in d = 1,2  and 3 dimensions. 

The formation of a distribution of various size droplets is the common feature of a 
wide variety of systems, including thin films [ 1,2], breath figures [3,4], soap bubbles 
[5], fly ash particles [6,7], microemulsions [8], dew, clouds [9], rain, fog, foam and 
froth. Motivated by experiments on thin-film growth [2], we have recently developed 
a scaling theory and a simple model for describing droplet growth in homogeneously 
nucleated processes [2]. With homogeneous nucleation [ 1,2], droplets form and grow 
from anywhere in the system. However, there are many systems [ l ,  3-91 in which 
droplets do not form and grow spontaneously. Instead, the formation of droplets is 
initiated at ‘impurity’ centres that act as the nuclei for the droplets. 

In this letter we present a scaling description and a model for describing droplet 
growth with heterogeneous nucleation. We show that in contrast to homogeneous 
nucleation, where the size distribution consists of a power-law distribution superim- 
posed on a monodispersed distribution at large sizes, the droplet size distribution has 
a monodispersed bell-shaped form. The origin of this difference and its significance 
as far as the scaling properties of the two systems is concerned is pointed out. The 
exact exponents describing the size distribution and the growth law for droplet growth 
with heterogeneous nucleation are determined using scaling arguments. We also apply 
the Smoluchowski rate equation to the problem of droplet growth. Using this approach 
we obtain a relation between the exponents and determine the scaling form of the 
reaction kernel. 

In order to describe droplet growth and coalescence with heterogeneous nucleation 
we have developed a model where initially there are a fixed number of nucleation sites 
in the system. The simulations are started by placing No droplets of diameter do in a 
&dimensional system of size Ld such that there is no overlap between the droplets. 
In general, droplets grow by two distinct mechanisms [ 1,2]. The first process is direct 
absorption from the vapour and the second is droplet coalescence. In a uniform vapour 
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density, every droplet grows at a rate proportional to its surface area. As a generalisation 
of this scenario, we assume that the droplet radii grow as 

d r ld t  CC ro (1) 
where w is an arbitrary exponent. At each time step in the simulations, the radius of 
each of the droplets is increased according to (1) using the formula 

r' = (rc + S ~ ) ' / S  (2) 
where r' is the new radius, 6 = 1 - o and S is a small number. As the growth of the 
droplets continues, the separation of various droplets decreases and-upon contact- 
droplets coalesce to form larger droplets. In each time step, droplets are examined 
for possible overlaps and overlapping droplets are coalesced with mass and centre-of- 
mass conservation. As a generalisation of the growth and coalescence of spherical 
droplets, we assume that the droplets in our model are hyperspherical with a dimension- 
ality D. When a droplet of radius rl touches or overlaps a droplet of radius r2, a new 
droplet is formed, centred on the centre of mass of the two original droplets, with a 
radius r which is given by [2] 

r = ( r f + r F ) l / D .  ( 3 )  
If this droplet overlaps one or more other droplets, they are also coalesced and this 
procedure continues until no overlaps remain. Some processes such as the phase 
transition from an isotropic to a nematic phase in liquid crystals correspond to 
D = d = 3 ,  whereas the growth of water droplets on surfaces (e.g. breath figures) 
corresponds to D = 3 and d = 2, and the formation of dew on the cobweb corresponds 
to D = 3  and d = l .  

Figure 1 shows the distribution of the droplets at three different times during the 
growth in a system with No = 20 000, do = 1.5, L = 512, w = 0, D = 3 and d = 2. In order 
to test for possible scaling, the lengths have been rescaled in such a way that the system 
size in all three figures is equal to 8dOS1/3, where S is the mean droplet size. It is clear 
from these figures that the droplet size distribution is quite self-similar if the system 
is scaled properly. In the very early stages of the growth, i.e. before any droplet has 
touched and coalesced with any other droplet, all droplets have the same size. In the 
later stages of the growth, due to coalescence, this sharp distribution is broadened into 
a bell-shaped curve, as shown in figure 2, where we have plotted the droplet size 

Figure 1. Sample droplet size distributions at three different times during the growth in a 
system with No=20000, do= 1.5, L=512, w =0, D = 3  and d = 2 .  In order to show the 
self-similarity of the distributions we have rescaled all the lengths so that the system size 
is equal to 8d0S"3 in each case. 
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Figure 2. The droplet size distribution at different times during the growth in a system 
with w = O ,  D = 3  and d =2.  Due to coalescence, the distribution is broadened into a 
bell-shaped curve. The most characteristic feature of the distribution is that the position 
of the peak moves to larger sizes with increasing time. At the same time the position of 
the peak moves down indicating that the density of large droplets decreases. 

distribution at different times during the growth. The most characteristic feature of 
the distribution is that the position of the peak of the distribution, which is a measure 
of the mean droplet mass, moves to larger sizes with increasing time. On the other 
hand, the number density of large droplets decreases. 

We can describe the process of droplet growth with heterogeneous nucleation in 
a way very similar to our approach for homogeneous nucleation [ 2 ] .  In analogy with 
homogeneous nucleation [2], we assume that the number of droplets of size s at time 
t scales as [ 10,111 

ns(t)- s-”(s/s(t)) (4) 

where S ( t )  = Z s 2 n s ( t ) / Z s  n , ( t )  is the mean droplet size. S ( t )  and the mean radius 
R ( t ) = S ( t ) ’ I D  diverge as 

S (  t )  - t z  and R( t )  - tZ’D.  ( 5 )  

The total number of droplets in the system, N ( t ) ,  which is given by N ( t )  = E n s ( ? ) ,  is 
expected to decrease with an exponent z’ as 

N (  t )  - t -” .  ( 6 )  

The size distribution exponent 0 and the dynamic exponents z and z’ may depend on 
w, d and D. In addition, since the total mass in the system is not a constant, 0 does 
not have a superuniversal value of 2 as in aggregation processes [ 10,111. Note that in 
contrast to the case of homogeneous nucleation [ 2 ] ,  the scaling function f ( x )  has a 
bell-shaped form centred around x = 1. Figure 3 shows how the data for various times 
can be scaled into a single scaling curve using (4). We have obtained equally excellent 
scaling plots for other values of o and D in d = 1 , 2  and 3. 

We now show how the exponents 0, z, and z’  can be determined exactly using 
scaling arguments. The only assumption in our calculation is that the mean droplet 
radius R ( t )  is the only characteristic length in the problem. For the mass density p 
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Figure 3. The data of figure 2 for various times can be scaled into a single scaling curve 
using (4). We have obtained equally excellent scaling plots for other values of w and D 
in d = 1 , 2  and 3 dimensions. 

Using the scaling form (4) in the definition of p, we get 

p=C.sn , ( t ) -  dss'-'f(s/S(t))-S2-' dxx'-'f(x))- tZ(2- ' ) .  (8) i i 
In comparing (7) with (8) we find 

8 = 1 + d /  D. ( 9 )  

This expression is the same as for large droplets in homogeneous nucleation [2] and 
it is independent of the rule for the growth of the individual droplets. 

In order to determine the growth-law exponent z, we note that our scaling assump- 
tion indicates that the growth of the mean droplet radius is governed by ( l ) ,  with or 
without coalescence. This implies that 

R (  t )  - tl/(l-w). (10) 

Z =  D/(1 - U ) .  (11 )  

Using the fact that S ( t )  - R (  t)", from ( 5 )  and (10) we find 

The exponent z' can be obtained directly from the definition of N (  t )  and the scaling 
form (4). We find 

N ( t )  = z n , ( t ) -  dss-'f(s/S(t))-S'-' dxx'-'f(x)- tZ ( ' - ' ) .  (12) 

In comparing (12) with (6), and substituting the values of 8 and z from (9) and ( l l ) ,  
respectively, we obtain 

I I 
z ' = d / ( l - w ) .  (13) 

The simulation results for various values of w, and D in d = 1 ,2  and 3 are in excellent 
agreement with predictions (9),  (11 )  and (13). 
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The traditional method for studying the kinetics of aggregation processes is to use 
the Smoluchowski rate-equation approach [ 121. Similarly, for the growth and coales- 
cence of droplets we can write the kinetic equation 

dn, 1 m 

1 K,ninj - n, K,nl + K~-l , ln , - l  - K:,,n, (14) -=- 
d t  2 i+ j=s  ] = I  

where K, is the rate coefficient for coalescence of a droplet of size i with a droplet of 
size j and KI, is the rate of growth of droplets of size i according to (1) which is the 
growth rate due to absorption of monomers. The main advantage of the kinetic equation 
approach is that it provides a simple physical interpretation of the temporal evolution 
of the size distribution. The first term on the right-hand side is the rate at which 
droplets of size s are formed by aggregation of droplets of size i and j to form droplets 
of size s. The second term is the rate at which droplets of size s disappear by coalescence 
with droplets of size j .  The third and fourth terms describe the growth of the droplets 
by absorption from the vapour and are manifestations of (1). The third term gives the 
rate at which droplets of size s - 1 grow to form droplets of size s. The last term gives 
the rate at which the number of droplets of size s decreases when droplets of size s 
grow according to (1) to form droplets of size s+ 1. 

The kinetic equation (14) provides a mean-field description of the growth and 
coalescence of droplets, because spatial fluctuations in the density of the droplets are 
neglected. Except for special cases, the kinetic equation cannot be solved for the 
physically interesting forms of the Ku. However, using the dynamic scaling approach 
[lo, 111,  it is possible to obtain results without solving the kinetic equation directly. 
We assume that (14) is invariant under the transformations 

s + b s  t + b’/’t 
(15) 

K, + b-A Kib,b n,(t) + b-en,b(b”’t) 

where b is a scale factor and A is the degree of homogeneity of the reaction kernel. 
Using these transformations in (14) we find the relation 

e - l / z  = 1 + A. (16) 

In addition, according to (1) the coefficient K:, is given by the rate of growth of the 
droplets, namely 

K: , -ds/dt-s”  with v = ( w + D -  l)/D. (17) 

Therefore, the kinetic equation gives the same expression ( 1  1) for the growth exponent 
z. Substituting the exact values of e and z from (9) and ( l l ) ,  respectively, in (16) we 
find 

A = ( w + d - 1 )/ D. (18) 

If we substitute the results l / z  + e = 2, and 8 = 1 + d /  D for homogeneous nucleation 
[2] in (16), we find 

A = (2d/D)  - 1.  (19) 

It would be instructive to obtain the reaction kernels directly in order to test relations 
(18) and (19). 

We now compare and contrast heterogeneous droplet growth with homogeneous 
nucleation. The growth of large droplets in homogeneous nucleation is governed by 
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the rate at which a droplet absorbs small droplets from the vapour. Assuming a uniform 
vapour density, the rate of growth of the droplets is proportional to their area, i.e. 

d(RD)/dtcc Rd. (20) 

This implies that R - t ” ( D - d )  . In comparing this result with (lo), we find that w = 
1 - D + d for the growth of large droplets in homogeneous nucleation. Substituting 
this value of w into (1 1) we find z = D / ( D  - d ) ,  in agreement with the results reported 
in [ 2 ] .  

The main difference between homogeneous nucleation and heterogeneous 
nucleation is the continuous replenishment of monomers and small droplets in the 
case of homogeneous nucleation. This is reflected in the appearance of two types of 
size distributions in the homogeneous nucleation system: a power-law decay at small 
sizes, indicating a polydispersed distribution, is superimposed on a bell-shaped curve 
at larger droplet sizes and is given by the exponents 6 and z given in [ 2 ] .  The bell-shaped 
distribution arises from the growth and coalescence of large droplets. The polydispersed 
part of the distribution, which does not exist in the case of heterogeneous nucleation, 
is due to the continuous feeding of the monomers and nucleation of small droplets. 
The fact that a source of particles leads to the formation of a steady-state power-law 
size distribution in an aggregation process has been recognised already in the case of 
cluster-cluster aggregation in the presence of a source and a sink [13]. 

In summary, the formation of a distribution of droplets is ubiquitous in nature 
[14], from thin films to water droplets in rain and clouds. We have shown that the 
scaling description is an effective method for describing the kinetics of droplet growth. 
We have also developed a simple model which captures the essential physics of droplet 
growth and can be used for further investigations of droplet growth phenomena. 

This work was supported by the Research Corporation, the Office of Naval Research 
and the Petroleum Research Fund Administered by the American Chemical Society. 
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